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SEVERAL NOTES ON CONJECTURES OF BARICZ

LI YIN, LU-FANG MI, AND HUA ZHONG XU

ABSTRACT. In this paper, we mainly give a kind of method to deal with Baricz’s
conjecture, and establish some new inequalities. we also prove some facts about
the functions gn(c) = =32 and f,(a,c) = Qol=a)n

(e)n (©)n

1. INTRODUCTION
The following beautiful inequality for Legendre polynomial is due to P. Turdn[25]
[Poi1(r)]? > Po(r) Posa(r) (1.1)
forall r € (—1,1) and n =0,1,2-- -, where P, is the Legendre polynomial, that is,
ar | (2 —1)"
P,(r) = [L )

o nlan

1—
=2F (—n,n+ L1l — T) : (1.2)
Here, oFi(a,b;c;r) denotes the Gauss hypergeometric function[4] which for given
complex numbers a,b and ¢ with ¢ # 0,—1,—2,--- | has the infinite series represen-

tation

ad (a,m)(b,n) r"
Flabier) =oFi(aber) =3 @DGD™ (13)
~ (en) nl

n—1

where(a)p = 1 and (a,n) = [] (a+ k) is shifted factorial function or the Appel-

1 symbol. Later, this classicgl Oinequality has been extended in several direction-
s: ultraspherical, Laguerre and Hermite polynomial[22], Jacobi polynomial[16, 17],
general class of polynomial[15], Bessel function of the first kind[23], modified Bessel
functions of the first kind[8, 20, 24], general Bessel functions[11], generalized trigono-
metric and hyperbolic functions[10], hypergeometric function[6], generalized com-
plete elliptic integrals[5], regular coulomb wave functions[9], and so on. It is worth
mentioning that the inequality (1.1) was improved by Constantinescu[14] and Alzer
et al in [2].

Let us consider the notation F,(r) = F(a,c — a;c¢;r) where r € (0,1). In [6],
Baricz proposed the following conjecture for Gauss hypergeometric function:

Conjecture 1[6, Open problem| If mq,my are two-variable means, i. e., for
i=1,2 and for all z,y, « > 0, we have

mi(may) = mi(yvx)ami(x7m) = x,m,(ou,ay) = (XTII,i(!E,y)
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and z < m;(z,y) < y whenever z < y, then find conditions on aj,as > 0 and ¢ > 0
for which the inequality

mi (Fal(r)aFaz(T)) < (Z)sz(ahaz)(r) (1'4)

holds true for all r € (0,1).
In the same paper, Baricz also proposed following other open problems.
Conjecture 2[6, Open problems a] For each n > 1 and 0 < a < ¢, the function

gn(c) = % is strictly concave.

Conjecture 3[6, Open problems b] Is it true that for each n > 1 and 0 < a < ¢,
the function f,(a,c) = W is strictly concave as a function of two variable?

The main object of this paper is to give a partial solution on Conjecture 1. On
the other hand, we also give some properties of the functions g,(c) = (c(;;zg”' and
fn (CL, C) = (a)n((cc);a)n.

For two distinct positive real numbers 2 and y, the Arithmetic mean, Geometric

mean, Identric mean, Stolarsky mean and Extended mean are respectively defined
by

T+y

Ala,y) = ——  Glz,y) = vy,
_ Ty

L(x,y)—ma T # Y,
1

Hw.9) = 37z 17y
:L.IZJ 1/(15—?/)
I(w)zl( )  a iy,

yp+1_gr1\ 1/p B
Up(z,y) :{ ((P+1—)(y—w)) . v #y,p# 10,
Yy, T=Y,

and

pyd — z 1/(q—p)
E(p,q;x,y) = <5y,,_xp> pa(p — g)(x —y) # 0,

It is easy to see that
Uf]_(l’,y) = pl_i>n_11 Up(mvy) = L(%?/)a Ul(%?J) - A(mvy)a

Uo(z,y) = g% Up(x,y) = I(z,y),U_a(z,y) = G(z,y),

and
E(0,1;2,y) = L(z,y), E(1,2;2,y) = A(,y),
E(1,Lz,y) = I(z,y), EQ0,0;2,y) = G(z,y).

Let f : I — (0,00) be continuous, where I is a sub-interval of (0,00). Let M
and N be the means defined above, the we call that the function f is M N-convex
(concave) if

f(M(z,y)) < (Z)N(f(2), f(y)) (1.5)
for all z,y € I. Recently, generalized convexity/concavity with respect to general
mean values has been studied by Anderson et al. in [3]. In [7], Baricz studied that
if the functions f is differentiable, then it is (a,b)-convex (concave) on I if and only
if 217 (z)/f(x)'? is increasing (decreasing). It can be observed easily that (1,
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1)-convexity means the A A-convexity, (1, 0)-convexity means the AG-convexity, and
(0, 0)-convexity means GG-convexity.
In [12, 13], the following inequalities were studied:

Theorem 1.1 (Theorem 1[12]). Let f : I — (0,00) and I C (0,00). Then
(1) f is LL-convex(concave) if f is increasing and log-convex(concave),
(2) f is AL-convex(concave) if f is increasing and log-convez(concave).

Theorem 1.2 (Theorem 1.6[13]). Let f : I — (0,00) and I C (0,00). Then the
following inequality holds true:

I(f(x), f(y) = f(I(z,y)),
(I(f(x), f(y) < F(A(z,9))),

if the function f(x) is a continuously differentiable, increasing and log-convex(concave).

2. LEMMAS

Lemma 2.1. [21] Let f,g : [a,b] — R be integrable functions, both increasing or
both decreasing. Furthermore, let p : [a,b] — R be a positive, integrable function.
Then

b b b b
/pwnm@/mmmms/mmw/pmmmwm (2.1)

If one of the functions f or g is non-increasing and the other non-decreasing, then
the inequality in (2.1) is reversed.

Lemma 2.2. [19] Fora <y <x <b, Then

wﬁ+ﬂ< 1L%wmsﬂﬂﬁﬁl (22)

2 Tr—y 2

if the function ¢(x) is convex on [a,b].

Lemma 2.3. [19] The function p — Upy(z,y) is strictly increasing on R — {0, —1}.
Lemma 2.4. [19] The function p,q,z,y — E(p,q;x,y) is strictly increasing on
pq(p —a)(x —y) # 0.

Lemma 2.5. [6] For 0 < a < ¢ < 1 and r € (0,1), the function Fy(r) =
F(a,c — a;c;r) is strictly sub-additive and strictly concave, consequently is strictly
log-concave.

Lemma 2.6. [6] Let us consider the notation fn(a) = (a)n(c — a), where 0 < a <
c<landn=1,2---. Then f,(a) is strictly concave on (0,c).

3. MAIN RESULTS

Theorem 3.1. Let f : I — (0,00) and I C (0,00). For p < 0, then the following
inequality holds true:

if the function f(z) is a twice differentiable, increasing and concave.

71



72

Y. Li, L-F Mi and Z. X. Hua

Proof. Easy computation yields
(fP(x)) = pfr~H(2)f'(z),
(f7(@))" = pp = D f*(@) (f'(2))" + pfP~ (@) f ().
Since the function f(z) is increasing and concave, we have
(fP(2))" < 0,(f(2))" = 0.

So the function fP(x) is decreasing and convex on p < 0. By using Lemma 2.1, we

have /: FP(u)du /zy fu)du < /zu ldu /ZU fP(w) f' (u)du. (3.2)

On the other hand, simple computation and substitution ¢t = f(u) yield
_ FPrL(y)— Pt
nU,(f(x), f(y)) = lln (M)
Ln (u)
P I f(u)du

Considering inequality (3.2) and Lemma 2.2, we have

nUp(f (@), f()) = LIn (L)
> ;1n<fp<A<x,y>>=1nf< (2,9))

The proof is complete. a

It is easy to verify that the function Fy(r) satisfies all conditions of Theorem 3.1
by using Lemma 2.5. So, we obtain following Corollary 3.1:

Corollary 3.1. For0<a;<c<1,i=1,2,7r €(0,1) and p <0, then
Up (Fal (T)’ Faz (T)) > FA(a1,a2)(T)' (3'3)

Similarly, applying results of Theorem 1.1 and 1.2, the following theorem holds
true:

Theorem 3.2. For0<a; <c<1,i=1,2,r € (0,1), then
(-Z)L( ( )’FGQ( )) < FL(al,ag)(r)
(Q)L (Fa1 (T‘), Fa2 (T)) < FA al,ag)(r)’
(3)T (Fay (1); Fay (1) < Faay,a0)(7)-

Remark 3.1. Corollary 3.1 and Theorem 3.2 give a partial solution of Conjecture 1.
It is worth noting that our method offers a kind of way to solve conjecture of Baricz.
Similar idea may apply other means. we give two meaning results.

Theorem 3.3. Forp > 1,p' <1, Let f : I — (0,00) and I C (0,00). Then the
following inequality holds true:

Up(f(2), f(y) = f(Up(z,y)), (34)

if the function f(z) is a twice differentiable, increasing and convex.

Proof. Because the function f(x) is increasing and convex, we have

(fP (@) = 0,(f(x))" = 0,
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and consequently fP(x) is increasing and convex. By using Lemma 2.1, we also have

/j f‘”(U)dU/: f(uw)du < /zyldu/: FP(u) ' (uw)du. (3.5)

So, simple computation and substitution ¢t = f(u) yield
_ 1 S (y)— P (2)
Uy (f(x (IZ () = . n ((p+1)(f}yy)12(3;)))
_ 1 fP du 1 Y P (u)du
=y (71‘%“ )z 5 (Bea)

> },ln(f”(A(fv,y)) =In f(A(z,y))

by using Lemma 2.2. Considering increasing property of the function f(x) and

Lemma 2.3, we have

Theorem 3.4. Let f: I — (0,00) and I C (0,00).
(1) Forp<1,q<2,q—p>1, we have

E(p,q; f(x), f(y)) > f(E(p,¢;7,y)) (3.6)

If the function f(x) is a twice differentiable, increasing, convexr and the another
function fP=(z)f'(z) is also increasing.
(2) For ¢ —p > 1, we have

Ep,q; f(x), f(y) > f(A(z,v)) (3.7)

If the function f(x) is a twice differentiable, increasing, convex and the other func-
tion fP~Y(x)f'(z) is also increasing.

Proof. Since the proof of part (2) is similar to part (1), we only prove the part (1)
here. Similar to the proof of Theorem 3.1, we easily know that the function f77P(x)
is increasing and convex. An easy computation and substitution ¢t = f(u) yield

In E(p, q: f(x), f(y))
— 1l (g Fi(y)—f(z)
a—p q fP(y)—fr(x)
L1n<fyf" (u)f (u)du)
P L7 =) f (u)du )
Since the functions f97P(z) and fP~1(z)f'(z) are increasing on I C (0,00), now by
using 2.1 again, we have

[ s [ rrrwies [N [ oiwrwae es)

So, we have

y fa- p
I E(p, g; f(2), f p ( fyldu )
> 45 In (f(A(z, ))) =In f(E(1,2;,y))
> In f(E(p,¢;,y))
by using Lemma 2.2 and Lemma 2.4. This completes the proof. (]

Next, we shall give some properties of the functions g,(c) and f,(a,c).

c—a)

Theorem 3.5. For eachn > 1 and 0 < a < ¢, the function g,(c) = ((CT" is strictly
increasing and strictly log-concave on (a,c0).
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Proof. After some elementary computation, we get

n—1

, - 1
9n(e) = agn(c Z (c+Ek)(c+k—a)

<§_8> :Z <<c+1k>2 - <c+k1—a>2>

0
, ’
9"(’3)) < 0. This finishes the proof. O

and

which implies that g;,(¢) > 0 and (

Theorem 3.6. For 0 < a; < ¢ < 1,i=1,2, the following inequality holds true:

a1 +az c1+c !
(f” (T 2 )) > fnla1,¢1) fn (a1, ¢2) fn (a2,¢1) fn (a2,c2) . (3.9)

Proof. From Lemma 2.6, we know that the function f,(a) is strictly log-concave.
Combining with log-concave of g,,(¢) in Theorem 3.5, we have

f, (a1+a2 c1+c2) — (Mt@)n(q;@_h;az)n

B (252)

> ooy, (55 o) o), (55 - ),
(‘1+(‘2 —a1 (CI;CQ—GQ)

=/(a1), (a2) \/ r1+02 ($) “

\/((11—%\/ 61—a1 n 02 t)zl),(ctc—lc)zi)n (62(0_23/721)"
= /fa(a1,c1) fn (alaCQ)fn (a2701)fn (ag,c2).
This finishes the proof. u
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